solve using quadratic formula 2y^2-11y+12=0
Solve : $$|t|y'(t)+(t-1)y(t)=t^2$$
|4x-8|=8
2/7 + 6/10
|5x+10|=20
$a^{1/2}$*$a^{1/3}$
(d^2-6d+13)y=0
from higher order ordinary differential equation
$a^{1/2}$ X $a^{1/3}$
Find a basis for the subspace of R4 spanned by S.
S = {(2, 9, −2, 53), (−5, 2, 5, −2), (8, −5, −8, 17), (0, −5, 0, 15)}