\sqrt[5]{8^{2}}\cdot\sqrt[4]{16}\cdot\sqrt[3]{2^{5}}

asked by guest
on Apr 06, 2025 at 4:16 pm



You asked:

Evaluate the expression: 825164253\sqrt[5]{{8}^{2}} \cdot \sqrt[4]{16} \cdot \sqrt[3]{{2}^{5}}

MathBot Answer:

825164253=82131514.58755981693146892505768125670652\sqrt[5]{{8}^{2}} \cdot \sqrt[4]{16} \cdot \sqrt[3]{{2}^{5}} = 8 \cdot 2^{\frac{13}{15}} \approx 14.58755981693146892505768125670652


825164253=825164253=645164253=225164253=2252253=2252323=22522223=4252223=821315\begin{aligned}\sqrt[5]{{8}^{2}} \cdot \sqrt[4]{16} \cdot \sqrt[3]{{2}^{5}}&=\sqrt[5]{8^{2}} \cdot \sqrt[4]{16} \cdot \sqrt[3]{2^{5}}\\&=\sqrt[5]{64} \cdot \sqrt[4]{16} \cdot \sqrt[3]{2^{5}}\\&=2 \cdot \sqrt[5]{2} \cdot \sqrt[4]{16} \cdot \sqrt[3]{2^{5}}\\&=2 \cdot \sqrt[5]{2} \cdot 2 \cdot \sqrt[3]{2^{5}}\\&=2 \cdot \sqrt[5]{2} \cdot 2 \cdot \sqrt[3]{32}\\&=2 \cdot \sqrt[5]{2} \cdot 2 \cdot 2 \cdot 2^{\frac{2}{3}}\\&=4 \cdot \sqrt[5]{2} \cdot 2 \cdot 2^{\frac{2}{3}}\\&=8 \cdot 2^{\frac{13}{15}}\end{aligned}