$\sqrt{\n+1}$ < $\sqrt{\n+2}$ + $\sqrt{\n+3}$
314374
820862
824838
797673
16k^2-9k-8>0
Evaluate the following limit if it exists:
lim
x→∞+(x^16)/e^x
-9-2+5=
12/2 to a mixed number
252136
828569
$\sqrt{\4}$
1,3=0 , 3,4=52 , 2,7=35 then 4,2=?
x→∞+
x
16
e