$\tan({20})$
x\frac{dy}{dx}-\frac{1}{2}y\:=\frac{1}{2}xy^2\left(x+1\right)
y=0.12x+0.1016
Rearrange the above equation for x
$\sqrt{\frac{\left[1 + \frac{\tan(20)}{\cot(65,5)}\right]}{\sin^2(65,5) - \frac{\tan(20) \cdot (1,4 + \cos(2 \cdot 65,5))}{2 \cdot \cot(65,5)}}}$...
A recipe required 2 cups of flour and 1 cup of sugar. what is the ratio of the flour to sugar ?
y=0.12x+0.1016 rearrange for x
15$sin^{2}$(74.5)-26cos(74.5)-23
15$sin^{2}$(-74.5)-26cos(-74.5)-23
23i⁵-12i⁷-4i
$\sqrt{\frac{\left[1 + \frac{\tan(20^\circ)}{\cot(65,5^\circ)}\right]}{\sin^2(65,5^\circ) - \frac{\tan(20^\circ) \cdot (1,4 + \cos(2 \cdot 65,5^\circ))}{2 \cdot \cot(65,5^\circ)}}}$...