$$\int_{\}^{\}(\(x^2-4x-2)/(x^2-2x)) d(\(x))$$
2^-4
if 3y-x = 4, find the value of y, when x=2
$$\int_{\Box}^{\Box}(\(x^2-4x-2)/(x^2-2x)) d(\(x))$$
0100101101010010010010000101000001001111010110000100110101001100
2x+3y=-1,x-y=2
2x+3y=1
7x+2y=-22
α
120
=
93
𝛼
1
2
0
9
3
$\frac{710+705+715+700+695+705+700+710}{8}$
(0.39 x 520) / (300 x 0.16) =