$\frac{710+705+715+700+695+705+700+710}{8}$
You asked:
Evaluate the expression: \(\frac{710 + 705 + 715 + 700 + 695 + 705 + 700 + 710}{8}\)
MathBot Answer:
\[\frac{710 + 705 + 715 + 700 + 695 + 705 + 700 + 710}{8} = 705\]
\[\begin{aligned}\frac{710 + 705 + 715 + 700 + 695 + 705 + 700 + 710}{8}& = \left(710 + 705 + 715 + 700 + 695 + 705 + 700 + 710\right) \cdot \frac{1}{8}\\& = \left(1415 + 715 + 700 + 695 + 705 + 700 + 710\right) \cdot \frac{1}{8}\\& = \left(2130 + 700 + 695 + 705 + 700 + 710\right) \cdot \frac{1}{8}\\& = \left(2830 + 695 + 705 + 700 + 710\right) \cdot \frac{1}{8}\\& = \left(3525 + 705 + 700 + 710\right) \cdot \frac{1}{8}\\& = \left(4230 + 700 + 710\right) \cdot \frac{1}{8}\\& = \left(4930 + 710\right) \cdot \frac{1}{8}\\& = \frac{5640}{8}\\& = 705\end{aligned}\]