2 $\sqrt{50}$ -8 $\sqrt{18}$ +3 $\sqrt{72}$
You asked:
Evaluate the expression: \(2 \cdot \sqrt{50} - 8 \cdot \sqrt{18} + 3 \cdot \sqrt{72}\)
MathBot Answer:
\[2 \cdot \sqrt{50} - 8 \cdot \sqrt{18} + 3 \cdot \sqrt{72} = 4 \sqrt{2} \approx 5.65685424949238019520675489683879\]
\[\begin{aligned}2 \cdot \sqrt{50} - 8 \cdot \sqrt{18} + 3 \cdot \sqrt{72}& = 2 \cdot 5 \cdot \sqrt{2} - 8 \cdot \sqrt{18} + 3 \cdot \sqrt{72}\\& = 10 \cdot \sqrt{2} - 8 \cdot \sqrt{18} + 3 \cdot \sqrt{72}\\& = 10 \cdot \sqrt{2} - 8 \cdot 3 \cdot \sqrt{2} + 3 \cdot \sqrt{72}\\& = 10 \cdot \sqrt{2} - 24 \cdot \sqrt{2} + 3 \cdot \sqrt{72}\\& = 10 \cdot \sqrt{2} - 24 \cdot \sqrt{2} + 3 \cdot 6 \cdot \sqrt{2}\\& = 10 \cdot \sqrt{2} - 24 \cdot \sqrt{2} + 18 \cdot \sqrt{2}\\& = -14 \cdot \sqrt{2} + 18 \cdot \sqrt{2}\\& = 4 \cdot \sqrt{2}\end{aligned}\]