x3+9x22x\frac{x^3+9x^2}{2x} × x214x+45x281\frac{x^2-14x+45}{x^2-81}

asked by guest
on Nov 19, 2024 at 8:37 am



You asked:

Evaluate the expression: x3+9x22xx214x+45x281\frac{{x}^{3} + 9 {x}^{2}}{2 x} \cdot \frac{{x}^{2} - 14 x + 45}{{x}^{2} - 81}

MathBot Answer:

Evaluated



x3+9x22xx214x+45x281=(x3+9x2)(x214x+45)2x(x281)\displaystyle \frac{{x}^{3} + 9 {x}^{2}}{2 x} \cdot \frac{{x}^{2} - 14 x + 45}{{x}^{2} - 81} = \frac{\left(x^{3} + 9 x^{2}\right) \left(x^{2} - 14 x + 45\right)}{2 x \left(x^{2} - 81\right)}


Expanded

x3+9x22xx214x+45x281=x42x21625x32x216281x22x2162+405x2x2162\frac{{x}^{3} + 9 {x}^{2}}{2 x} \cdot \frac{{x}^{2} - 14 x + 45}{{x}^{2} - 81} = \frac{x^{4}}{2 x^{2} - 162} - \frac{5 x^{3}}{2 x^{2} - 162} - \frac{81 x^{2}}{2 x^{2} - 162} + \frac{405 x}{2 x^{2} - 162}


Factored

x3+9x22xx214x+45x281=x(x5)2\frac{{x}^{3} + 9 {x}^{2}}{2 x} \cdot \frac{{x}^{2} - 14 x + 45}{{x}^{2} - 81} = \frac{x \left(x - 5\right)}{2}