(5/3)^-5*(5/3)^-11=(5/3)^(8*x)
Find the value of x
You asked:
MathBot Answer:
The 4 solutions to the equation are: \[\begin{aligned}x &= -2\\x &= - \frac{- 2 \log{\left(5 \right)} + 2 \log{\left(3 \right)}}{- \log{\left(5 \right)} + \log{\left(3 \right)}} + \frac{i \pi}{- \log{\left(5 \right)} + \log{\left(3 \right)}} \approx -2.0 -6.1500295 i\\x &= - \frac{- 8 \log{\left(5 \right)} + 8 \log{\left(3 \right)}}{4 \left(- \log{\left(5 \right)} + \log{\left(3 \right)}\right)} + \frac{i \pi}{4 \left(- \log{\left(5 \right)} + \log{\left(3 \right)}\right)} \approx -2.0 -1.5375074 i\\x &= - \frac{- 4 \log{\left(5 \right)} + 4 \log{\left(3 \right)}}{2 \left(- \log{\left(5 \right)} + \log{\left(3 \right)}\right)} + \frac{i \pi}{2 \left(- \log{\left(5 \right)} + \log{\left(3 \right)}\right)} \approx -2.0 -3.0750147 i\end{aligned}\]
\(i\) is the imaginary unit, defined as \(i^2 = -1\).