(S^2-15S+41)/((S+2)(S-3)^2)
You asked:
Evaluate the expression: \(\frac{{S}^{2} - 15 S + 41}{\left(S + 2\right) \cdot {\left( S - 3 \right)}^{2}}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{{S}^{2} - 15 S + 41}{\left(S + 2\right) \cdot {\left( S - 3 \right)}^{2}} = \frac{S^{2} - 15 S + 41}{\left(S - 3\right)^{2} \left(S + 2\right)} \)
Expanded
\[\frac{{S}^{2} - 15 S + 41}{\left(S + 2\right) \cdot {\left( S - 3 \right)}^{2}} = \frac{S^{2}}{S^{3} - 4 S^{2} - 3 S + 18} - \frac{15 S}{S^{3} - 4 S^{2} - 3 S + 18} + \frac{41}{S^{3} - 4 S^{2} - 3 S + 18}\]