\frac{\left(-9+\sqrt{16}\right)\left(-3^2\right)}{-4-1}
You asked:
Evaluate the expression: \(\frac{\left(-9 + \sqrt{16}\right) \cdot -{3}^{2}}{-4 - 1}\)
MathBot Answer:
\[\frac{\left(-9 + \sqrt{16}\right) \cdot -{3}^{2}}{-4 - 1} = -9\]
\[\begin{aligned}\frac{\left(-9 + \sqrt{16}\right) \cdot -{3}^{2}}{-4 - 1}& = \left(-9 + \sqrt{16}\right) \cdot -1 \cdot 3^{2} \cdot \frac{1}{-4 - 1}\\& = \left(-9 + 4\right) \cdot -1 \cdot 3^{2} \cdot \frac{1}{-4 - 1}\\& = -5 \cdot -1 \cdot 3^{2} \cdot \frac{1}{-4 - 1}\\& = -5 \cdot -1 \cdot 9 \cdot \frac{1}{-4 - 1}\\& = -5 \cdot -1 \cdot \frac{9}{-5}\\& = -5 \cdot -1 \cdot - \frac{9}{5}\\& = 5 \cdot - \frac{9}{5}\\& = -9\end{aligned}\]