0=\frac{-\sqrt{3}\sin \left(x\right)-\cos \left(x\right)+\sqrt{4-\sin ^2\left(x\right)-3\cos ^2\left(x\right)+\sqrt{3}\sin \left(2x\right)}}{\sqrt{\sqrt{3}\sin \left(2x\right)-3\cos ^2\left(x\right)-\sin ^2\left(x\right)+4}}
You asked:
Solve the equation \(0 = \frac{-\left( \sqrt{3} \cdot \sin\left( x \right) \right) - \cos\left( x \right) + \sqrt{4 - {\sin\left( x \right)}^{2} - 3 \cdot {\cos\left( x \right)}^{2} + \sqrt{3} \cdot \sin\left( 2 x \right)}}{\sqrt{\sqrt{3} \cdot \sin\left( 2 x \right) - 3 \cdot {\cos\left( x \right)}^{2} - {\sin\left( x \right)}^{2} + 4}}\) for the variable \(x\).