0=\frac{-\sqrt{3}\sin \left(x\right)-\cos \left(x\right)+\sqrt{4-\sin ^2\left(x\right)-3\cos ^2\left(x\right)+\sqrt{3}\sin \left(2x\right)}}{\sqrt{\sqrt{3}\sin \left(2x\right)-3\cos ^2\left(x\right)-\sin ^2\left(x\right)+4}}

asked by guest
on Nov 17, 2024 at 11:17 am



You asked:

Solve the equation 0=(3sin(x))cos(x)+4sin(x)23cos(x)2+3sin(2x)3sin(2x)3cos(x)2sin(x)2+40 = \frac{-\left( \sqrt{3} \sin\left( x \right) \right) - \cos\left( x \right) + \sqrt{4 - {\sin\left( x \right)}^{2} - 3 {\cos\left( x \right)}^{2} + \sqrt{3} \sin\left( 2 x \right)}}{\sqrt{\sqrt{3} \sin\left( 2 x \right) - 3 {\cos\left( x \right)}^{2} - {\sin\left( x \right)}^{2} + 4}} for the variable xx.