(1/2,-1)(1,1/2)

asked by guest
on Apr 02, 2025 at 8:40 pm



You asked:

Find the equation of the line through (12,1)(\frac{1}{2}, -1) and (1,12)(1, \frac{1}{2}).

MathBot Answer:

Standard Form:

Ax+By+C=0 \begin{aligned}Ax + By + C = 0\end{aligned} Slope=AB=y2y1x2x1AB=121112AB=3212A=32,B=12 \begin{aligned} \text{Slope} &= -\frac{A}{B} \\ &= \frac{y_2-y_1}{x_2-x_1} \\ -\frac{A}{B} &= \frac{ \frac{1}{2} - -1 }{ 1 - \frac{1}{2} } \\ -\frac{A}{B} &= \frac{ \frac{3}{2} }{ \frac{1}{2} } \\ A =& - \frac{3}{2}, B = \frac{1}{2} \end{aligned} 32x+12y+C=032(12)+12(1)+C=0++C=012+C=34C=54 \begin{aligned} - \frac{3}{2} x + \frac{1}{2} y + C &= 0 \\ - \frac{3}{2}(\frac{1}{2}) + \frac{1}{2}(-1) + C &= 0 \\ + + C &= 0 \\ - \frac{1}{2} + C &= \frac{3}{4} \\ C &= - \frac{5}{4} \end{aligned} An equation of the line in standard form is: 6x+2y+5=0 - 6 x + 2 y + 5 = 0


Slope-Intercept Form:

y=mx+b y = m x + b Slope=y2y1x2x1Slope=121112Slope=3 \begin{aligned} \text{Slope} &= \frac{y_2-y_1}{x_2-x_1} \\ \text{Slope} &= \frac{ \frac{1}{2} - -1 }{ 1 - \frac{1}{2} } \\ \text{Slope} &= 3 \end{aligned} y=3x+b1=3×12+b1=32+bb=52 \begin{aligned} y &= 3 x + b \\ -1 &= 3 \times \frac{1}{2} + b \\ -1 &= \frac{3}{2} + b \\ b &= - \frac{5}{2} \end{aligned} The slope-intercept form of the line is: y=3x52 y = 3 x - \frac{5}{2}