Find $\left(\frac{2}{6}\right)^2 \cdot \left(\frac{9}{27}\right)^3$.

asked by guest
on Nov 15, 2024 at 10:40 am



You asked:

Evaluate the expression: \({\left( \frac{2}{6} \right)}^{2} \cdot {\left( \frac{9}{27} \right)}^{3}\)

MathBot Answer:

\[{\left( \frac{2}{6} \right)}^{2} \cdot {\left( \frac{9}{27} \right)}^{3} = \frac{1}{243} = 0.\overline{004115226337448559670781893}\]


\[\begin{aligned}{\left( \frac{2}{6} \right)}^{2} \cdot {\left( \frac{9}{27} \right)}^{3}& = \left(\frac{2}{6}\right)^{2} \cdot \left(\frac{9}{27}\right)^{3}\\& = \frac{1}{9} \cdot \left(\frac{9}{27}\right)^{3}\\& = \frac{1}{9} \cdot \frac{1}{27}\\& = \frac{1}{243}\end{aligned}\]