15(s+1)/s(s+7)(s+2)

asked by guest
on Nov 17, 2024 at 6:38 am



You asked:

Evaluate the expression: \(\frac{15 \cdot \left(s + 1\right)}{s \cdot \left(s + 7\right) \cdot \left(s + 2\right)}\)

MathBot Answer:

Evaluated



\(\displaystyle \frac{15 \cdot \left(s + 1\right)}{s \cdot \left(s + 7\right) \cdot \left(s + 2\right)} = \frac{15 \left(s + 1\right)}{s \left(s + 2\right) \left(s + 7\right)} \)


Expanded

\[\frac{15 \cdot \left(s + 1\right)}{s \cdot \left(s + 7\right) \cdot \left(s + 2\right)} = \frac{15 s}{s^{3} + 9 s^{2} + 14 s} + \frac{15}{s^{3} + 9 s^{2} + 14 s}\]