15(s+1)/s(s+7)(s+2)
You asked:
Evaluate the expression: \(\frac{15 \cdot \left(s + 1\right)}{s \cdot \left(s + 7\right) \cdot \left(s + 2\right)}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{15 \cdot \left(s + 1\right)}{s \cdot \left(s + 7\right) \cdot \left(s + 2\right)} = \frac{15 \left(s + 1\right)}{s \left(s + 2\right) \left(s + 7\right)} \)
Expanded
\[\frac{15 \cdot \left(s + 1\right)}{s \cdot \left(s + 7\right) \cdot \left(s + 2\right)} = \frac{15 s}{s^{3} + 9 s^{2} + 14 s} + \frac{15}{s^{3} + 9 s^{2} + 14 s}\]