1/ x3x^{-3} = 1/10

asked by guest
on Apr 04, 2025 at 8:22 am



You asked:

Solve the equation 1x3=110\frac{1}{{x}^{-3}} = \frac{1}{10} for the variable xx.

MathBot Answer:

The solutions are given by the formula: x=1023cos(2πk3)10+1023sin(2πk3)10ix = \frac{10^{\frac{2}{3}} \cos{\left(\frac{2 \pi k}{3} \right)}}{10} + \frac{10^{\frac{2}{3}} \sin{\left(\frac{2 \pi k}{3} \right)}}{10} i where kk is an integer in 0k<30 \le k < 3.

There is 11 real solution.

There are 22 solutions with nonzero imaginary part.


Real solutions: x=1023100.46415888\begin{aligned}x &= \frac{10^{\frac{2}{3}}}{10} \\&\approx 0.46415888\end{aligned}


Solutions with nonzero imaginary part: x=102320+10233i200.23207944+0.40197338ix=10232010233i200.232079440.40197338i\begin{aligned}x &= - \frac{10^{\frac{2}{3}}}{20} + \frac{10^{\frac{2}{3}} \sqrt{3} i}{20} \\&\approx -0.23207944 + 0.40197338 i\\x &= - \frac{10^{\frac{2}{3}}}{20} - \frac{10^{\frac{2}{3}} \sqrt{3} i}{20} \\&\approx -0.23207944 -0.40197338 i\end{aligned}


ii is the imaginary unit, defined as i2=1i^2 = -1.