1/TAN(3)[0.928+0.0038(-28.96-4.24)]

asked by guest
on Apr 07, 2025 at 6:56 am



You asked:

Evaluate the expression: 1tan(3)(0.928+0.0038(28.964.24))\frac{1}{\tan\left( 3 \right) \left(0.928 + 0.0038 \left(-28.96 - 4.24\right)\right)}

MathBot Answer:

1tan(3)(0.928+0.0038(28.964.24))=1250010023tan(3)8.74894312011689797145135111683937\frac{1}{\tan\left( 3 \right) \left(0.928 + 0.0038 \left(-28.96 - 4.24\right)\right)} = \frac{12500}{10023 \tan{\left(3 \right)}} \approx -8.74894312011689797145135111683937


1tan(3)(0.928+0.0038(28.964.24))=1tan(3)(9281000+3810000((28+96100)(4+24100)))=1tan(3)(116125+3810000((28+96100)(4+24100)))=1tan(3)(116125+3810000((28+2425)(4+24100)))=1tan(3)(116125+3810000(72425(4+24100)))=1tan(3)(116125+3810000(72425(4+625)))=1tan(3)(116125+3810000(7242510625))=1tan(3)(116125+38100001665)=1tan(3)(116125+1950001665)=1tan(3)(116125157712500)=1tan(3)1002312500=11002312500tan(3)=12500100231tan(3)\begin{aligned}\frac{1}{\tan\left( 3 \right) \left(0.928 + 0.0038 \left(-28.96 - 4.24\right)\right)}&=\frac{1}{\tan{\left(3 \right)} \cdot \left(\frac{928}{1000} + \frac{38}{10000} \cdot \left(- \left(28 + \frac{96}{100}\right) - \left(4 + \frac{24}{100}\right)\right)\right)}\\&=\frac{1}{\tan{\left(3 \right)} \cdot \left(\frac{116}{125} + \frac{38}{10000} \cdot \left(- \left(28 + \frac{96}{100}\right) - \left(4 + \frac{24}{100}\right)\right)\right)}\\&=\frac{1}{\tan{\left(3 \right)} \cdot \left(\frac{116}{125} + \frac{38}{10000} \cdot \left(- \left(28 + \frac{24}{25}\right) - \left(4 + \frac{24}{100}\right)\right)\right)}\\&=\frac{1}{\tan{\left(3 \right)} \cdot \left(\frac{116}{125} + \frac{38}{10000} \cdot \left(- \frac{724}{25} - \left(4 + \frac{24}{100}\right)\right)\right)}\\&=\frac{1}{\tan{\left(3 \right)} \cdot \left(\frac{116}{125} + \frac{38}{10000} \cdot \left(- \frac{724}{25} - \left(4 + \frac{6}{25}\right)\right)\right)}\\&=\frac{1}{\tan{\left(3 \right)} \cdot \left(\frac{116}{125} + \frac{38}{10000} \cdot \left(- \frac{724}{25} - \frac{106}{25}\right)\right)}\\&=\frac{1}{\tan{\left(3 \right)} \cdot \left(\frac{116}{125} + \frac{38}{10000} \cdot - \frac{166}{5}\right)}\\&=\frac{1}{\tan{\left(3 \right)} \cdot \left(\frac{116}{125} + \frac{19}{5000} \cdot - \frac{166}{5}\right)}\\&=\frac{1}{\tan{\left(3 \right)} \cdot \left(\frac{116}{125} - \frac{1577}{12500}\right)}\\&=\frac{1}{\tan{\left(3 \right)} \cdot \frac{10023}{12500}}\\&=\frac{1}{\frac{10023}{12500} \cdot \tan{\left(3 \right)}}\\&=\frac{12500}{10023} \cdot \frac{1}{\tan{\left(3 \right)}}\end{aligned}