find value of m
m+m+m+m+m+m+mm+m+m+m+mmm+m=2m-8m
You asked:
Solve the equation \[m + m + m + m + m + m + m m + m + m + m + m m m + m = 2 m - 8 m\] for the unknown \(m\).
MathBot Answer:
The 3 solutions to the equation are: \[\begin{aligned}m &= 0\\m &= - \frac{1}{2} - \frac{3 \sqrt{7} i}{2} \approx -0.5 -3.968627 i\\m &= - \frac{1}{2} + \frac{3 \sqrt{7} i}{2} \approx -0.5 + 3.968627 i\end{aligned}\]
\(i\) is the imaginary unit, defined as \(i^2 = -1\).