3×5500^−0.25

asked by guest
on Jan 17, 2025 at 5:42 am



You asked:

Evaluate the expression: \(3 \cdot {5500}^{-0.25}\)

MathBot Answer:

\[3 \cdot {5500}^{-0.25} = \frac{3 \sqrt{2} \cdot \sqrt[4]{6655}}{110} \approx 0.34836184527497206309829752778181\]


\[\begin{aligned}3 \cdot {5500}^{-0.25}& = 3 \cdot 5500^{- \frac{25}{100}}\\& = 3 \cdot 5500^{\frac{-1}{4}}\\& = 3 \cdot \frac{1}{\sqrt[4]{5500}}\\& = 3 \cdot \frac{1}{110} \cdot \sqrt{2} \cdot \sqrt[4]{6655}\\& = \frac{3}{110} \cdot \sqrt{2} \cdot \sqrt[4]{6655}\end{aligned}\]