3(9.18) raise to power 1.12
You asked:
Evaluate the expression: \(3 \cdot {9.18}^{1.12}\)
MathBot Answer:
\[3 \cdot {9.18}^{1.12} = \frac{1377 \cdot 459^{\frac{3}{25}} \cdot \sqrt[25]{80000000000000000000}}{500} \approx 35.93395814934812147143573938027351\]
\[\begin{aligned}3 \cdot {9.18}^{1.12}& = 3 \cdot \left(9 + \frac{18}{100}\right)^{1 + \frac{12}{100}}\\& = 3 \cdot \left(9 + \frac{9}{50}\right)^{1 + \frac{12}{100}}\\& = 3 \cdot \left(\frac{459}{50}\right)^{1 + \frac{12}{100}}\\& = 3 \cdot \left(\frac{459}{50}\right)^{1 + \frac{3}{25}}\\& = 3 \cdot \left(\frac{459}{50}\right)^{\frac{28}{25}}\\& = 3 \cdot \frac{459}{500} \cdot 459^{\frac{3}{25}} \cdot \sqrt[25]{80000000000000000000}\\& = \frac{1377}{500} \cdot 459^{\frac{3}{25}} \cdot \sqrt[25]{80000000000000000000}\end{aligned}\]