(x-2)/(x+2)+6(x-2)(x-6)=1,x=-26

asked by guest
on Apr 06, 2025 at 7:14 pm



You asked:

Solve the system of equations:x2x+2+6(x2)(x6)=1x=26\begin{aligned}\frac{x - 2}{x + 2} + 6 \left(x - 2\right) \left(x - 6\right) &= 1\\x &= -26\end{aligned}

MathBot Answer:

The system of equations has no solution.


Solve 6(x6)(x2)+x2x+2=16 \left(x - 6\right) \left(x - 2\right) + \frac{x - 2}{x + 2} = 1 for xx. x=2+(123i2)13+12279i93+163(123i2)13+12279i93,x=2+163(12+3i2)13+12279i93+(12+3i2)13+12279i93,x=2+16313+12279i93+13+12279i93x = 2 + \left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{1}{3} + \frac{\sqrt{12279} i}{9}} + \frac{16}{3 \left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{1}{3} + \frac{\sqrt{12279} i}{9}}}, x = 2 + \frac{16}{3 \left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{1}{3} + \frac{\sqrt{12279} i}{9}}} + \left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{1}{3} + \frac{\sqrt{12279} i}{9}}, x = 2 + \frac{16}{3 \sqrt[3]{\frac{1}{3} + \frac{\sqrt{12279} i}{9}}} + \sqrt[3]{\frac{1}{3} + \frac{\sqrt{12279} i}{9}}