4*3/(5+1)+7%4

asked by guest
on Jan 26, 2025 at 9:46 pm



You asked:

Evaluate the expression: \(\frac{4 \cdot 3}{5 + 1} + 7 \:\%\: 4\)

MathBot Answer:

\[\frac{4 \cdot 3}{5 + 1} + 7 \:\%\: 4 = 5\]


\[\begin{aligned}\frac{4 \cdot 3}{5 + 1} + 7 \:\%\: 4& = 4 \cdot 3 \cdot \frac{1}{5 + 1} + \left(7 \:\%\: 4\right)\\& = 4 \cdot \frac{3}{6} + \left(7 \:\%\: 4\right)\\& = \frac{4}{2} + \left(7 \:\%\: 4\right)\\& = 2 + \left(7 \:\%\: 4\right)\\& = 2 + 3\\& = 5\end{aligned}\]


The notation \(m \% n\) denotes the remainder of the integer \(m\) divided by the integer \(n\). \(m \% n = r\) means that given integers \(m\) and \(n\), where \(n\) is non-zero, there exist integers \(q\) and \(r\), where \(\lvert r \rvert < \lvert n \rvert\), such that \(m = q n + r\). MathBot adopts the convention that the remainder \(r\) and the divisor \(n\) share the same sign. Alternate notations for \(m \% n\) are \(\operatorname{mod}(m, n)\) and \(m \bmod n\).