sin4x + sin 2x=0

asked by guest
on Mar 24, 2025 at 9:23 am



You asked:

Solve the equation sin(4x)+sin(2x)=0\sin\left( 4 x \right) + \sin\left( 2 x \right) = 0 for the variable xx.

MathBot Answer:

The real solutions are: x={πn  |  nZ}{3.1415927n  |  nZ}x={π(12+n)  |  nZ}{3.1415927n+1.5707963  |  nZ}x={π(13+n)  |  nZ}{3.1415927n+1.0471976  |  nZ}x={π(2+3n)3  |  nZ}{3.1415927n+2.0943951  |  nZ}\begin{aligned}x &= \left\{\pi n\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{3.1415927 n\; \middle|\; n \in \mathbb{Z}\right\}\\x &= \left\{\pi \left(\frac{1}{2} + n\right)\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{3.1415927 n + 1.5707963\; \middle|\; n \in \mathbb{Z}\right\}\\x &= \left\{\pi \left(\frac{1}{3} + n\right)\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{3.1415927 n + 1.0471976\; \middle|\; n \in \mathbb{Z}\right\}\\x &= \left\{\frac{\pi \left(2 + 3 n\right)}{3}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{3.1415927 n + 2.0943951\; \middle|\; n \in \mathbb{Z}\right\}\end{aligned}