a+ab+b=19
You asked:
Investigate the equation: \(a + a b + b = 19\).
MathBot Answer:
The graph of the equation \(a + a b + b = 19\) is a hyperbola.
The coordinates of its foci are: \(\left(- 2 \sqrt{10} - 1, - 2 \sqrt{10} - 1\right)\) and \(\left(-1 + 2 \sqrt{10}, -1 + 2 \sqrt{10}\right)\).
The coordinates of its vertices are: \(\left(- 2 \sqrt{5} - 1, - 2 \sqrt{5} - 1\right)\) and \(\left(-1 + 2 \sqrt{5}, -1 + 2 \sqrt{5}\right)\).
The asymptotes have equations: \(- 4 \sqrt{5} a - 4 \sqrt{5} = 0\) and \(- 4 \sqrt{5} b - 4 \sqrt{5} = 0\).