∣0((−3)−(−3))+(−1)((−3)−(−1))+1((−1)−(−3))∣

asked by guest
on Jan 11, 2025 at 1:43 am



You asked:

Evaluate the expression: \(\left\lvert 0 \left(-3 - -3\right) + -1 \left(-3 - -1\right) + 1 \left(-1 - -3\right)\right\rvert\)

MathBot Answer:

\[\left\lvert 0 \left(-3 - -3\right) + -1 \left(-3 - -1\right) + 1 \left(-1 - -3\right)\right\rvert = 4\]


\[\begin{aligned}\left\lvert 0 \left(-3 - -3\right) + -1 \left(-3 - -1\right) + 1 \left(-1 - -3\right)\right\rvert& = \left|{0 \cdot \left(-3 + 3\right) - \left(-3 + 1\right) + 1 \cdot \left(-1 + 3\right)}\right|\\& = \left|{0 \cdot 0 - \left(-3 + 1\right) + 1 \cdot \left(-1 + 3\right)}\right|\\& = \left|{0 - \left(-3 + 1\right) + 1 \cdot \left(-1 + 3\right)}\right|\\& = \left|{0 - -2 + 1 \cdot \left(-1 + 3\right)}\right|\\& = \left|{0 + 2 + 1 \cdot \left(-1 + 3\right)}\right|\\& = \left|{0 + 2 + 1 \cdot 2}\right|\\& = \left|{0 + 2 + 2}\right|\\& = \left|{2 + 2}\right|\\& = \left|{4}\right|\\& = 4\end{aligned}\]