3(X-1)(X-1)(X-1)(X+2)
You asked:
Evaluate the expression: \(3 \cdot \left(X - 1\right) \cdot \left(X - 1\right) \cdot \left(X - 1\right) \cdot \left(X + 2\right)\)
MathBot Answer:
Evaluated
\(\displaystyle 3 \cdot \left(X - 1\right) \cdot \left(X - 1\right) \cdot \left(X - 1\right) \cdot \left(X + 2\right) = 3 \left(X - 1\right)^{3} \left(X + 2\right) \)
Expanded
\[3 \cdot \left(X - 1\right) \cdot \left(X - 1\right) \cdot \left(X - 1\right) \cdot \left(X + 2\right) = 3 X^{4} - 3 X^{3} - 9 X^{2} + 15 X - 6\]