284sin(20) = -82.39sin(36.9)*W + V*sin(36.9)

-284cos(20) = 82.39cos(36.9)*W + V*cos(36.9)

asked by guest
on Jan 22, 2025 at 2:55 pm



You asked:

Solve the system of equations:284sin(20)=(82.39sin(36.9))W+Vsin(36.9)(284cos(20))=82.39cos(36.9)W+Vcos(36.9)\begin{aligned}284 \sin\left( 20 \right) &= -\left( 82.39 \sin\left( 36.9 \right) \right) \cdot W + V \sin\left( 36.9 \right)\\-\left( 284 \cos\left( 20 \right) \right) &= 82.39 \cos\left( 36.9 \right) \cdot W + V \cos\left( 36.9 \right)\end{aligned}

MathBot Answer:

The system of equations has one solution.V=284sin(20)+(284sin(20)cos(36910)sin(36910)+284cos(20))sin(36910)2cos(36910)sin(36910)V = - \frac{- 284 \sin{\left(20 \right)} + \frac{\left(\frac{284 \sin{\left(20 \right)} \cos{\left(\frac{369}{10} \right)}}{\sin{\left(\frac{369}{10} \right)}} + 284 \cos{\left(20 \right)}\right) \sin{\left(\frac{369}{10} \right)}}{2 \cos{\left(\frac{369}{10} \right)}}}{\sin{\left(\frac{369}{10} \right)}} W=50(284sin(20)cos(36910)sin(36910)+284cos(20))8239cos(36910)W = - \frac{50 \cdot \left(\frac{284 \sin{\left(20 \right)} \cos{\left(\frac{369}{10} \right)}}{\sin{\left(\frac{369}{10} \right)}} + 284 \cos{\left(20 \right)}\right)}{8239 \cos{\left(\frac{369}{10} \right)}}

    • Axis Limits
    • min x
    • max x
    • min y
    • max y
  • Update Axis Limits
Close Controls