284sin(20) = -82.39sin(36.9)*W + V*sin(36.9)
-284cos(20) = 82.39cos(36.9)*W + V*cos(36.9)
You asked:
Solve the system of equations:\[\begin{aligned}284 \sin\left( 20 \right) &= -\left( 82.39 \sin\left( 36.9 \right) \right) \cdot W + V \sin\left( 36.9 \right)\\-\left( 284 \cos\left( 20 \right) \right) &= 82.39 \cos\left( 36.9 \right) \cdot W + V \cos\left( 36.9 \right)\end{aligned}\]
MathBot Answer:
The system of equations has one solution.\[V = - \frac{- 284 \sin{\left(20 \right)} + \frac{\left(\frac{284 \sin{\left(20 \right)} \cos{\left(\frac{369}{10} \right)}}{\sin{\left(\frac{369}{10} \right)}} + 284 \cos{\left(20 \right)}\right) \sin{\left(\frac{369}{10} \right)}}{2 \cos{\left(\frac{369}{10} \right)}}}{\sin{\left(\frac{369}{10} \right)}}\] \[W = - \frac{50 \cdot \left(\frac{284 \sin{\left(20 \right)} \cos{\left(\frac{369}{10} \right)}}{\sin{\left(\frac{369}{10} \right)}} + 284 \cos{\left(20 \right)}\right)}{8239 \cos{\left(\frac{369}{10} \right)}}\]