6×($3^{3}$ −3×6)÷(7 $^{2}$ −40)
You asked:
Evaluate the expression: \(\frac{6 \cdot \left({3}^{3} - 3 \cdot 6\right)}{{7}^{2} - 40}\)
MathBot Answer:
\[\frac{6 \cdot \left({3}^{3} - 3 \cdot 6\right)}{{7}^{2} - 40} = 6\]
\[\begin{aligned}\frac{6 \cdot \left({3}^{3} - 3 \cdot 6\right)}{{7}^{2} - 40}& = 6 \cdot \left(3^{3} - 3 \cdot 6\right) \cdot \frac{1}{7^{2} - 40}\\& = 6 \cdot \left(27 - 3 \cdot 6\right) \cdot \frac{1}{7^{2} - 40}\\& = 6 \cdot \left(27 - 18\right) \cdot \frac{1}{7^{2} - 40}\\& = 6 \cdot 9 \cdot \frac{1}{7^{2} - 40}\\& = 6 \cdot 9 \cdot \frac{1}{49 - 40}\\& = 6 \cdot \frac{9}{9}\\& = 6 \cdot 1\\& = 6\end{aligned}\]