find the nth term of 1, 8, 21, 40, 65

asked by guest
on Mar 29, 2025 at 4:59 am



MathBot Answer:

1,8,21,40,65,...1,8,21,40,65,...This infinite sequence is a quadratic sequence. The nth term rule for the sequence is an=n(3n2)a_n=n \left(3 n - 2\right), where n>0n>0. The recursive formula is an=an1+6n5a_n=a_{n-1} + 6 n - 5, where n>1n>1 and a1=1a_{1}=1.


18214065+7+13+19+25+6+6+6\begin{matrix}1&&8&&21&&40&&65\\[6pt]&+7&&+13&&+19&&+25\\[6pt]&&+6&&+6&&+6\\[6pt]\end{matrix}

Explicit Formula

Since there are 2 rows of differences, the formula for the sequence can be written as a polynomial with degree 2, where nn is the term number and (x0,x1,x2)(x_{0}, x_{1}, x_{2}) are the coefficients: an=n2x2+nx1+x0a_n=n^{2} x_{2} + n x_{1} + x_{0}

Using the first 3 terms in the sequence, create and solve the system of equations for (x0,x1,x2)(x_{0}, x_{1}, x_{2}): 1=12x2+1x1+x08=22x2+2x1+x021=32x2+3x1+x0x0+x1+x2=1x0+2x1+4x2=8x0+3x1+9x2=21\begin{aligned} 1 &= 1^{2} x_{2} + 1 x_{1} + x_{0} \\ 8 &= 2^{2} x_{2} + 2 x_{1} + x_{0} \\ 21 &= 3^{2} x_{2} + 3 x_{1} + x_{0} \end{aligned} \quad \Rightarrow \quad \begin{aligned} x_{0} + x_{1} + x_{2} = 1\\x_{0} + 2 x_{1} + 4 x_{2} = 8\\x_{0} + 3 x_{1} + 9 x_{2} = 21 \end{aligned} (x0,x1,x2)=(0, 2, 3) \Rightarrow \quad (x_{0}, x_{1}, x_{2})=\left( 0, \ -2, \ 3\right)

The nth term rule is:an=n2x2+nx1+x0=n2(3)+n(2)+(0)=n(3n2)\begin{aligned} a_n&=n^{2} x_{2} + n x_{1} + x_{0} \\ &=n^{2} \left(3\right) + n \left(-2\right) + \left(0\right) \\ &=n \left(3 n - 2\right) \end{aligned}

Recursive Formula

Since there are 2 rows of differences, the formula for the sequence can be written as the sum of an1a_{n-1} and polynomial with degree 1, where nn is the term number and (x0,x1)(x_{0}, x_{1}) are the coefficients: an=an1+nx1+x0a_n=a_{n-1} + n x_{1} + x_{0}

Using the first 3 terms in the sequence, create and solve the system of equations for (x0,x1)(x_{0}, x_{1}): 8=1+2x1+x021=8+3x1+x0x0+2x1=7x0+3x1=13\begin{aligned} 8 &= 1 + 2 x_{1} + x_{0} \\ 21 &= 8 + 3 x_{1} + x_{0} \end{aligned} \quad \Rightarrow \quad \begin{aligned} x_{0} + 2 x_{1} = 7\\x_{0} + 3 x_{1} = 13 \end{aligned} (x0,x1)=(5, 6) \Rightarrow \quad (x_{0}, x_{1})=\left( -5, \ 6\right)

The nth term rule is:an=an1+nx1+x0=an1+n(6)+(5)=an1+6n5\begin{aligned} a_n&=a_{n-1} + n x_{1} + x_{0} \\ &=a_{n-1} + n \left(6\right) + \left(-5\right) \\ &=a_{n-1} + 6 n - 5 \end{aligned}