100.5-98.75

asked by guest
on Mar 30, 2025 at 7:43 am



You asked:

Evaluate the expression: 100.598.75100.5 - 98.75

MathBot Answer:

100.598.75=1.75=74 100.5 - 98.75=1.75=\frac{7}{4}


100909.5140100098.75001.75 \begin{aligned} \overset{\mathtt{{\scriptscriptstyle 0}}}{\cancel{\mathtt{1}}}\overset{\mathtt{{\scriptscriptstyle 9}}}{\cancel{\mathtt{0}}}\overset{\mathtt{{\scriptscriptstyle 9}}}{\cancel{\mathtt{0}}}&\mathtt{.}\overset{{\scriptscriptstyle \mathtt{14}}}{\cancel{\mathtt{5}}}\overset{{\scriptscriptstyle \mathtt{10}}}{\cancel{\mathtt{0}}}\\ \mathtt{-\phantom{0}}\phantom{0}\mathtt{9}\mathtt{8}&\mathtt{.}\mathtt{7}\mathtt{5}\\ \hline \mathtt{0}\mathtt{0}\mathtt{1}&\mathtt{.}\mathtt{7}\mathtt{5} \end{aligned}

Borrow 10110^{-1}, resulting in 44 in the 10110^{-1} place, and 1010 in the 10210^{-2} place.

55 is the digit in the 10210^{-2} place. 10×1025×102=5×10210 \times 10^{-2} - 5 \times 10^{-2} = 5 \times 10^{-2}.

Borrow 10210^{2}, resulting in 00 in the 10210^{2} place, and 1010 in the 10110^{1} place.

Borrow 10110^{1}, resulting in 99 in the 10110^{1} place, and 1010 in the 10010^{0} place.

Borrow 10010^{0}, resulting in 99 in the 10010^{0} place, and 1515 in the 10110^{-1} place.

77 is the digit in the 10110^{-1} place. 14×1017×101=7×10114 \times 10^{-1} - 7 \times 10^{-1} = 7 \times 10^{-1}.

11 is the digit in the 10010^{0} place. 9×1008×100=1×1009 \times 10^{0} - 8 \times 10^{0} = 1 \times 10^{0}.

00 is the digit in the 10110^{1} place. 9×1019×101=0×1019 \times 10^{1} - 9 \times 10^{1} = 0 \times 10^{1}.

00 is the digit in the 10210^{2} place. 0×1020×102=0×1020 \times 10^{2} - 0 \times 10^{2} = 0 \times 10^{2}.