10⁹/3×10³×9.8
You asked:
Evaluate the expression: \(\frac{{10}^{9}}{3} \cdot {10}^{3} \cdot 9.8\)
MathBot Answer:
\[\frac{{10}^{9}}{3} \cdot {10}^{3} \cdot 9.8 = \frac{9800000000000}{3} = 3266666666666.\overline{6}\]
\[\begin{aligned}\frac{{10}^{9}}{3} \cdot {10}^{3} \cdot 9.8& = 10^{9} \cdot \frac{1}{3} \cdot 10^{3} \cdot \left(9 + \frac{8}{10}\right)\\& = \frac{1000000000}{3} \cdot 10^{3} \cdot \left(9 + \frac{8}{10}\right)\\& = \frac{1000000000}{3} \cdot 1000 \cdot \left(9 + \frac{8}{10}\right)\\& = \frac{1000000000}{3} \cdot 1000 \cdot \left(9 + \frac{4}{5}\right)\\& = \frac{1000000000}{3} \cdot 1000 \cdot \frac{49}{5}\\& = \frac{1000000000000}{3} \cdot \frac{49}{5}\\& = \frac{9800000000000}{3}\end{aligned}\]