### **Solution to Find Local Maxima, Minima, and Saddle Points of f(x,y)=2x28xy+y44y3 f(x, y) = 2x^2 - 8xy + y^4 - 4y^3 **

---

#### **Step 1: Compute the First Partial Derivatives**

To find critical points, we first compute the partial derivatives of f(x,y) f(x, y) with respect to x x and y y :

1. **Partial derivative w.r.t. x x :**

fx=fx=4x8y f_x = \frac{\partial f}{\partial x} = 4x - 8y

2. **Partial derivative w.r.t. y y :**

fy=fy=8x+4y312y2 f_y = \frac{\partial f}{\partial y} = -8x + 4y^3 - 12y^2

---

#### **Step 2: Find Critical Points**

Critical points occur where fx=0 f_x = 0 and fy=0 f_y = 0 .

1. **From fx=0 f_x = 0 :**

4x8y=0    x=2y 4x - 8y = 0 \implies x = 2y

2. **Substitute x=2y x = 2y into fy=0 f_y = 0 :**

8(2y)+4y312y2=0    16y+4y312y2=0 -8(2y) + 4y^3 - 12y^2 = 0 \implies -16y + 4y^3 - 12y^2 = 0

Simplify by dividing by 4:

4y+y33y2=0    y(y23y4)=0 -4y + y^3 - 3y^2 = 0 \implies y(y^2 - 3y - 4) = 0

Factor:

y(y4)(y+1)=0 y(y - 4)(y + 1) = 0

So, the solutions are:

y=0,y=4,y=1 y = 0, \quad y = 4, \quad y = -1

Corresponding x x -values:

- If y=0 y = 0 , x=2(0)=0 x = 2(0) = 0 : **Critical point (0,0) (0, 0) **.

- If y=4 y = 4 , x=2(4)=8 x = 2(4) = 8 : **Critical point (8,4) (8, 4) **.

- If y=1 y = -1 , x=2(1)=2 x = 2(-1) = -2 : **Critical point (2,1) (-2, -1) **.

---

#### **Step 3: Compute the Second Partial Derivatives**

To classify the critical points, we compute the second partial derivatives:

1. fxx=2fx2=4 f_{xx} = \frac{\partial^2 f}{\partial x^2} = 4

2. fyy=2fy2=12y224y f_{yy} = \frac{\partial^2 f}{\partial y^2} = 12y^2 - 24y

3. fxy=2fxy=8 f_{xy} = \frac{\partial^2 f}{\partial x \partial y} = -8

The **Hessian determinant** D D is:

D=fxxfyy(fxy)2=4(12y224y)(8)2=48y296y64D = f_{xx} f_{yy} - (f_{xy})^2 = 4(12y^2 - 24y) - (-8)^2 = 48y^2 - 96y - 64

---

#### **Step 4: Classify Each Critical Point**

1. **Critical Point (0,0) (0, 0) :**

- Compute D D at y=0 y = 0 :

D=48(0)296(0)64=64 D = 48(0)^2 - 96(0) - 64 = -64

- Since D<0 D < 0 , (0,0) (0, 0) is a **saddle point**.

2. **Critical Point (8,4) (8, 4) :**

- Compute D D at y=4 y = 4 :

D=48(16)96(4)64=76838464=320 D = 48(16) - 96(4) - 64 = 768 - 384 - 64 = 320

- Since D>0 D > 0 and fxx=4>0 f_{xx} = 4 > 0 , (8,4) (8, 4) is a **local minimum**.

- Compute f(8,4) f(8, 4) :

f(8,4)=2(64)8(8)(4)+256256=128256+0=128 f(8, 4) = 2(64) - 8(8)(4) + 256 - 256 = 128 - 256 + 0 = -128

3. **Critical Point (2,1) (-2, -1) :**

- Compute D D at y=1 y = -1 :

D=48(1)96(1)64=48+9664=80 D = 48(1) - 96(-1) - 64 = 48 + 96 - 64 = 80

- Since D>0 D > 0 and fxx=4>0 f_{xx} = 4 > 0 , (2,1) (-2, -1) is a **local minimum**.

- Compute f(2,1) f(-2, -1) :

f(2,1)=2(4)8(2)(1)+14(1)=816+1+4=3 f(-2, -1) = 2(4) - 8(-2)(-1) + 1 - 4(-1) = 8 - 16 + 1 + 4 = -3

---

#### **Step 5: Summary of Results**

- **Local Minima:**

- At (8,4) (8, 4) , f(8,4)=128 f(8, 4) = -128 .

- At (2,1) (-2, -1) , f(2,1)=3 f(-2, -1) = -3 .

- **Saddle Point:**

- At (0,0) (0, 0) .

- **Local Maxima:**

- None (the function has no local maxima in the observed domain).

---

### **Final Answer**

- **Local minima:** (8,4) (8, 4) and (2,1) (-2, -1) .

- **Saddle point:** (0,0) (0, 0) .

- **No local maxima** exist for this function.

**Visualization Note:**

To confirm these findings, it is helpful to graph the function around these critical points using a 3D plotting tool (e.g., Matplotlib, GeoGebra). This will visually verify the presence of the two local minima and the saddle point.

asked by guest
on Apr 07, 2025 at 3:58 am



Mathbot Says...

I wasn't able to parse your question, but the HE.NET team is hard at work making me smarter.