### **Solution to Find Local Maxima, Minima, and Saddle Points of f(x,y)=2x2−8xy+y4−4y3**
---
#### **Step 1: Compute the First Partial Derivatives**
To find critical points, we first compute the partial derivatives of f(x,y) with respect to x and y:
1. **Partial derivative w.r.t. x:**
fx=∂x∂f=4x−8y
2. **Partial derivative w.r.t. y:**
fy=∂y∂f=−8x+4y3−12y2
---
#### **Step 2: Find Critical Points**
Critical points occur where fx=0 and fy=0.
1. **From fx=0:**
4x−8y=0⟹x=2y
2. **Substitute x=2y into fy=0:**
−8(2y)+4y3−12y2=0⟹−16y+4y3−12y2=0
Simplify by dividing by 4:
−4y+y3−3y2=0⟹y(y2−3y−4)=0
Factor:
y(y−4)(y+1)=0
So, the solutions are:
y=0,y=4,y=−1
Corresponding x-values:
- If y=0, x=2(0)=0: **Critical point (0,0)**.
- If y=4, x=2(4)=8: **Critical point (8,4)**.
- If y=−1, x=2(−1)=−2: **Critical point (−2,−1)**.
---
#### **Step 3: Compute the Second Partial Derivatives**
To classify the critical points, we compute the second partial derivatives:
1. fxx=∂x2∂2f=4
2. fyy=∂y2∂2f=12y2−24y
3. fxy=∂x∂y∂2f=−8
The **Hessian determinant** D is:
D=fxxfyy−(fxy)2=4(12y2−24y)−(−8)2=48y2−96y−64
---
#### **Step 4: Classify Each Critical Point**
1. **Critical Point (0,0):**
- Compute D at y=0:
D=48(0)2−96(0)−64=−64
- Since D<0, (0,0) is a **saddle point**.
2. **Critical Point (8,4):**
- Compute D at y=4:
D=48(16)−96(4)−64=768−384−64=320
- Since D>0 and fxx=4>0, (8,4) is a **local minimum**.
- Compute f(8,4):
f(8,4)=2(64)−8(8)(4)+256−256=128−256+0=−128
3. **Critical Point (−2,−1):**
- Compute D at y=−1:
D=48(1)−96(−1)−64=48+96−64=80
- Since D>0 and fxx=4>0, (−2,−1) is a **local minimum**.
- Compute f(−2,−1):
f(−2,−1)=2(4)−8(−2)(−1)+1−4(−1)=8−16+1+4=−3
---
#### **Step 5: Summary of Results**
- **Local Minima:**
- At (8,4), f(8,4)=−128.
- At (−2,−1), f(−2,−1)=−3.
- **Saddle Point:**
- At (0,0).
- **Local Maxima:**
- None (the function has no local maxima in the observed domain).
---
### **Final Answer**
- **Local minima:** (8,4) and (−2,−1).
- **Saddle point:** (0,0).
- **No local maxima** exist for this function.
**Visualization Note:**
To confirm these findings, it is helpful to graph the function around these critical points using a 3D plotting tool (e.g., Matplotlib, GeoGebra). This will visually verify the presence of the two local minima and the saddle point.