d √4(t^2-7) / dt
asked by guest on Mar 21, 2025 at 12:24 am
You asked:
MathBot Answer:
d4(t2−7)dt=2(t2−7)t\displaystyle \frac{d \sqrt{4} \left({t}^{2} - 7\right)}{d t} = \frac{2 \left(t^{2} - 7\right)}{t} dtd4(t2−7)=t2(t2−7)
d4(t2−7)dt=2t−14t\frac{d \sqrt{4} \left({t}^{2} - 7\right)}{d t} = 2 t - \frac{14}{t}dtd4(t2−7)=2t−t14