$\frac{2x}{x^2-9}$ / $\frac{x}{x+3}$ / $\frac{2x}{x-3}$ =
You asked:
Evaluate the expression: \(\frac{\frac{\frac{2 x}{{x}^{2} - 9}}{\frac{x}{x + 3}}}{\frac{2 x}{x - 3}}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{\frac{\frac{2 x}{{x}^{2} - 9}}{\frac{x}{x + 3}}}{\frac{2 x}{x - 3}} = \frac{\left(x - 3\right) \left(x + 3\right)}{x \left(x^{2} - 9\right)} \)
Expanded
\[\frac{\frac{\frac{2 x}{{x}^{2} - 9}}{\frac{x}{x + 3}}}{\frac{2 x}{x - 3}} = \frac{x}{x^{2} - 9} - \frac{9}{x^{3} - 9 x}\]
Factored
\[\frac{\frac{\frac{2 x}{{x}^{2} - 9}}{\frac{x}{x + 3}}}{\frac{2 x}{x - 3}} = \frac{1}{x}\]