\left[\frac{5}{\sqrt{2}}cos\:30+\frac{6}{\sqrt{2}}cos60\right]+\left[\frac{5}{\sqrt{2}}sin\:30+\frac{6}{\sqrt{2}}sin60\right]
asked by guest
on Nov 17, 2024 at 5:27 pm
You asked:
Evaluate the expression:
25cos(30)+26cos(60)+25sin(30)+26sin(60)
MathBot Answer:
25cos(30)+26cos(60)+25sin(30)+26sin(60)=32cos(60)+252sin(30)+32sin(60)+252cos(30)≈−8.28180608060151373548635646962202
25cos(30)+26cos(60)+25sin(30)+26sin(60)=5⋅21⋅cos(30)+6⋅21⋅cos(60)+5⋅21⋅sin(30)+6⋅21⋅sin(60)=5⋅21⋅2⋅cos(30)+6⋅21⋅cos(60)+5⋅21⋅sin(30)+6⋅21⋅sin(60)=25⋅2⋅cos(30)+6⋅21⋅cos(60)+5⋅21⋅sin(30)+6⋅21⋅sin(60)=25⋅2⋅cos(30)+6⋅21⋅2⋅cos(60)+5⋅21⋅sin(30)+6⋅21⋅sin(60)=25⋅2⋅cos(30)+3⋅2⋅cos(60)+5⋅21⋅sin(30)+6⋅21⋅sin(60)=25⋅2⋅cos(30)+3⋅2⋅cos(60)+5⋅21⋅2⋅sin(30)+6⋅21⋅sin(60)=25⋅2⋅cos(30)+3⋅2⋅cos(60)+25⋅2⋅sin(30)+6⋅21⋅sin(60)=25⋅2⋅cos(30)+3⋅2⋅cos(60)+25⋅2⋅sin(30)+6⋅21⋅2⋅sin(60)=25⋅2⋅cos(30)+3⋅2⋅cos(60)+25⋅2⋅sin(30)+3⋅2⋅sin(60)=(3⋅2⋅cos(60)+25⋅2⋅cos(30))+25⋅2⋅sin(30)+3⋅2⋅sin(60)=(3⋅2⋅cos(60)+25⋅2⋅cos(30)+25⋅2⋅sin(30))+3⋅2⋅sin(60)=3⋅2⋅cos(60)+3⋅2⋅sin(60)+25⋅2⋅cos(30)+25⋅2⋅sin(30)