\left[\frac{5}{\sqrt{2}}cos\:30+\frac{6}{\sqrt{2}}cos60\right]+\left[\frac{5}{\sqrt{2}}sin\:30+\frac{6}{\sqrt{2}}sin60\right]

asked by guest
on Nov 17, 2024 at 5:27 pm



You asked:

Evaluate the expression: 52cos(30)+62cos(60)+52sin(30)+62sin(60)\frac{5}{\sqrt{2}} \cos\left( 30 \right) + \frac{6}{\sqrt{2}} \cos\left( 60 \right) + \frac{5}{\sqrt{2}} \sin\left( 30 \right) + \frac{6}{\sqrt{2}} \sin\left( 60 \right)

MathBot Answer:

52cos(30)+62cos(60)+52sin(30)+62sin(60)=32cos(60)+52sin(30)2+32sin(60)+52cos(30)28.28180608060151373548635646962202\frac{5}{\sqrt{2}} \cos\left( 30 \right) + \frac{6}{\sqrt{2}} \cos\left( 60 \right) + \frac{5}{\sqrt{2}} \sin\left( 30 \right) + \frac{6}{\sqrt{2}} \sin\left( 60 \right) = 3 \sqrt{2} \cos{\left(60 \right)} + \frac{5 \sqrt{2} \sin{\left(30 \right)}}{2} + 3 \sqrt{2} \sin{\left(60 \right)} + \frac{5 \sqrt{2} \cos{\left(30 \right)}}{2} \approx -8.28180608060151373548635646962202


52cos(30)+62cos(60)+52sin(30)+62sin(60)=512cos(30)+612cos(60)+512sin(30)+612sin(60)=5122cos(30)+612cos(60)+512sin(30)+612sin(60)=522cos(30)+612cos(60)+512sin(30)+612sin(60)=522cos(30)+6122cos(60)+512sin(30)+612sin(60)=522cos(30)+32cos(60)+512sin(30)+612sin(60)=522cos(30)+32cos(60)+5122sin(30)+612sin(60)=522cos(30)+32cos(60)+522sin(30)+612sin(60)=522cos(30)+32cos(60)+522sin(30)+6122sin(60)=522cos(30)+32cos(60)+522sin(30)+32sin(60)=(32cos(60)+522cos(30))+522sin(30)+32sin(60)=(32cos(60)+522cos(30)+522sin(30))+32sin(60)=32cos(60)+32sin(60)+522cos(30)+522sin(30)\begin{aligned}\frac{5}{\sqrt{2}} \cos\left( 30 \right) + \frac{6}{\sqrt{2}} \cos\left( 60 \right) + \frac{5}{\sqrt{2}} \sin\left( 30 \right) + \frac{6}{\sqrt{2}} \sin\left( 60 \right)&=5 \cdot \frac{1}{\sqrt{2}} \cdot \cos{\left(30 \right)} + 6 \cdot \frac{1}{\sqrt{2}} \cdot \cos{\left(60 \right)} + 5 \cdot \frac{1}{\sqrt{2}} \cdot \sin{\left(30 \right)} + 6 \cdot \frac{1}{\sqrt{2}} \cdot \sin{\left(60 \right)}\\&=5 \cdot \frac{1}{2} \cdot \sqrt{2} \cdot \cos{\left(30 \right)} + 6 \cdot \frac{1}{\sqrt{2}} \cdot \cos{\left(60 \right)} + 5 \cdot \frac{1}{\sqrt{2}} \cdot \sin{\left(30 \right)} + 6 \cdot \frac{1}{\sqrt{2}} \cdot \sin{\left(60 \right)}\\&=\frac{5}{2} \cdot \sqrt{2} \cdot \cos{\left(30 \right)} + 6 \cdot \frac{1}{\sqrt{2}} \cdot \cos{\left(60 \right)} + 5 \cdot \frac{1}{\sqrt{2}} \cdot \sin{\left(30 \right)} + 6 \cdot \frac{1}{\sqrt{2}} \cdot \sin{\left(60 \right)}\\&=\frac{5}{2} \cdot \sqrt{2} \cdot \cos{\left(30 \right)} + 6 \cdot \frac{1}{2} \cdot \sqrt{2} \cdot \cos{\left(60 \right)} + 5 \cdot \frac{1}{\sqrt{2}} \cdot \sin{\left(30 \right)} + 6 \cdot \frac{1}{\sqrt{2}} \cdot \sin{\left(60 \right)}\\&=\frac{5}{2} \cdot \sqrt{2} \cdot \cos{\left(30 \right)} + 3 \cdot \sqrt{2} \cdot \cos{\left(60 \right)} + 5 \cdot \frac{1}{\sqrt{2}} \cdot \sin{\left(30 \right)} + 6 \cdot \frac{1}{\sqrt{2}} \cdot \sin{\left(60 \right)}\\&=\frac{5}{2} \cdot \sqrt{2} \cdot \cos{\left(30 \right)} + 3 \cdot \sqrt{2} \cdot \cos{\left(60 \right)} + 5 \cdot \frac{1}{2} \cdot \sqrt{2} \cdot \sin{\left(30 \right)} + 6 \cdot \frac{1}{\sqrt{2}} \cdot \sin{\left(60 \right)}\\&=\frac{5}{2} \cdot \sqrt{2} \cdot \cos{\left(30 \right)} + 3 \cdot \sqrt{2} \cdot \cos{\left(60 \right)} + \frac{5}{2} \cdot \sqrt{2} \cdot \sin{\left(30 \right)} + 6 \cdot \frac{1}{\sqrt{2}} \cdot \sin{\left(60 \right)}\\&=\frac{5}{2} \cdot \sqrt{2} \cdot \cos{\left(30 \right)} + 3 \cdot \sqrt{2} \cdot \cos{\left(60 \right)} + \frac{5}{2} \cdot \sqrt{2} \cdot \sin{\left(30 \right)} + 6 \cdot \frac{1}{2} \cdot \sqrt{2} \cdot \sin{\left(60 \right)}\\&=\frac{5}{2} \cdot \sqrt{2} \cdot \cos{\left(30 \right)} + 3 \cdot \sqrt{2} \cdot \cos{\left(60 \right)} + \frac{5}{2} \cdot \sqrt{2} \cdot \sin{\left(30 \right)} + 3 \cdot \sqrt{2} \cdot \sin{\left(60 \right)}\\&=\left(3 \cdot \sqrt{2} \cdot \cos{\left(60 \right)} + \frac{5}{2} \cdot \sqrt{2} \cdot \cos{\left(30 \right)}\right) + \frac{5}{2} \cdot \sqrt{2} \cdot \sin{\left(30 \right)} + 3 \cdot \sqrt{2} \cdot \sin{\left(60 \right)}\\&=\left(3 \cdot \sqrt{2} \cdot \cos{\left(60 \right)} + \frac{5}{2} \cdot \sqrt{2} \cdot \cos{\left(30 \right)} + \frac{5}{2} \cdot \sqrt{2} \cdot \sin{\left(30 \right)}\right) + 3 \cdot \sqrt{2} \cdot \sin{\left(60 \right)}\\&=3 \cdot \sqrt{2} \cdot \cos{\left(60 \right)} + 3 \cdot \sqrt{2} \cdot \sin{\left(60 \right)} + \frac{5}{2} \cdot \sqrt{2} \cdot \cos{\left(30 \right)} + \frac{5}{2} \cdot \sqrt{2} \cdot \sin{\left(30 \right)}\end{aligned}