(e+f) (e-f) -2e (4f-e)
You asked:
Evaluate the expression: \(\left(e + f\right) \left(e - f\right) - 2 e \left(4 f - e\right)\)
MathBot Answer:
Evaluated
\(\displaystyle \left(e + f\right) \left(e - f\right) - 2 e \left(4 f - e\right) = - 2 e \left(4 f - e\right) + \left(f + e\right) \left(e - f\right) \)
Expanded
\[\left(e + f\right) \left(e - f\right) - 2 e \left(4 f - e\right) = - f^{2} - 8 f e + 3 e^{2}\]
Factored
\[\left(e + f\right) \left(e - f\right) - 2 e \left(4 f - e\right) = - f^{2} - 8 f e + 3 e^{2}\]
\(e\) is Euler's number, a mathematical constant that is approximately \(2.71828\).