55000 = 15000/(1+i) + 20000/(1+i)^2 + 25000/(1+i)^3 + 20000/(1+i)^4 +30000/(1+i)^5

asked by guest
on Jan 26, 2025 at 8:35 pm



You asked:

Solve the equation \(55000 = \frac{15000}{1 + i} + \frac{20000}{{\left( 1 + i \right)}^{2}} + \frac{25000}{{\left( 1 + i \right)}^{3}} + \frac{20000}{{\left( 1 + i \right)}^{4}} + \frac{30000}{{\left( 1 + i \right)}^{5}}\) for the variable \(i\).

MathBot Answer:

This equation has no unknown quantities, so it is either true or false.

This equation is false because the left-hand side is not equal to the right-hand side.

The left-hand side of the equation is:

\[55000\]

The right-hand side of the equation is:

\[\frac{15000}{1 + i} + \frac{20000}{{\left( 1 + i \right)}^{2}} + \frac{25000}{{\left( 1 + i \right)}^{3}} + \frac{20000}{{\left( 1 + i \right)}^{4}} + \frac{30000}{{\left( 1 + i \right)}^{5}} = \frac{20000}{\left(1 + i\right)^{4}} + \frac{20000}{\left(1 + i\right)^{2}} + 7500 \cdot \left(1 - i\right) + \frac{25000}{\left(1 + i\right)^{3}} + \frac{30000}{\left(1 + i\right)^{5}}\]

\(i\) is the imaginary unit, defined as \(i^2 = -1\).