-11=25\cos 40+60\cos \theta -80\cos 50

asked by guest
on Oct 10, 2024 at 12:40 am



You asked:

Solve the equation 11=25cos(40)+60cos(θ)80cos(50)-11 = 25 \cos\left( 40 \right) + 60 \cos\left( θ \right) - 80 \cos\left( 50 \right) for the variable θθ.

MathBot Answer:

The 2 solutions to the equation are: θ=im(arccos(11605cos(40)12+4cos(50)3))i0.84753566iθ=2πarccos(11605cos(40)12+4cos(50)3)6.28318530.84753566i\begin{aligned}θ &= \operatorname{im}{\left(\arccos{\left(- \frac{11}{60} - \frac{5 \cos{\left(40 \right)}}{12} + \frac{4 \cos{\left(50 \right)}}{3} \right)}\right)} i \approx 0.84753566 i\\θ &= 2 \pi - \arccos{\left(- \frac{11}{60} - \frac{5 \cos{\left(40 \right)}}{12} + \frac{4 \cos{\left(50 \right)}}{3} \right)} \approx 6.2831853 -0.84753566 i\end{aligned}