⅔√27−5√12+√3=
You asked:
Evaluate the expression: \(\frac{2}{3} \cdot \sqrt{27} - 5 \cdot \sqrt{12} + \sqrt{3}\)
MathBot Answer:
\[\frac{2}{3} \cdot \sqrt{27} - 5 \cdot \sqrt{12} + \sqrt{3} = - 7 \sqrt{3} \approx -12.12435565298214105469212439054111\]
\[\begin{aligned}\frac{2}{3} \cdot \sqrt{27} - 5 \cdot \sqrt{12} + \sqrt{3}& = \frac{2}{3} \cdot 3 \cdot \sqrt{3} - 5 \cdot \sqrt{12} + \sqrt{3}\\& = 2 \cdot \sqrt{3} - 5 \cdot \sqrt{12} + \sqrt{3}\\& = 2 \cdot \sqrt{3} - 5 \cdot 2 \cdot \sqrt{3} + \sqrt{3}\\& = 2 \cdot \sqrt{3} - 10 \cdot \sqrt{3} + \sqrt{3}\\& = -8 \cdot \sqrt{3} + \sqrt{3}\\& = -7 \cdot \sqrt{3}\end{aligned}\]