(8x-4)*(x+1/4)*(x-1)*(x+2)
You asked:
Evaluate the expression: \(\left(8 x - 4\right) \cdot \left(x + \frac{1}{4}\right) \cdot \left(x - 1\right) \cdot \left(x + 2\right)\)
MathBot Answer:
Evaluated
\(\displaystyle \left(8 x - 4\right) \cdot \left(x + \frac{1}{4}\right) \cdot \left(x - 1\right) \cdot \left(x + 2\right) = \left(8 x - 4\right) \left(x - 1\right) \left(x + \frac{1}{4}\right) \left(x + 2\right) \)
Expanded
\[\left(8 x - 4\right) \cdot \left(x + \frac{1}{4}\right) \cdot \left(x - 1\right) \cdot \left(x + 2\right) = 8 x^{4} + 6 x^{3} - 19 x^{2} + 3 x + 2\]
Factored
\[\left(8 x - 4\right) \cdot \left(x + \frac{1}{4}\right) \cdot \left(x - 1\right) \cdot \left(x + 2\right) = \left(2 x - 1\right) \left(4 x + 1\right) \left(x - 1\right) \left(x + 2\right)\]