\(\frac{k^{2}+5k+4}{4k^{2}+20k+24}\)
You asked:
Evaluate the expression: \(\frac{{k}^{2} + 5 k + 4}{4 {k}^{2} + 20 k + 24}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{{k}^{2} + 5 k + 4}{4 {k}^{2} + 20 k + 24} = \frac{k^{2} + 5 k + 4}{4 k^{2} + 20 k + 24} \)
Expanded
\[\frac{{k}^{2} + 5 k + 4}{4 {k}^{2} + 20 k + 24} = \frac{k^{2}}{4 k^{2} + 20 k + 24} + \frac{5 k}{4 k^{2} + 20 k + 24} + \frac{4}{4 k^{2} + 20 k + 24}\]
Factored
\[\frac{{k}^{2} + 5 k + 4}{4 {k}^{2} + 20 k + 24} = \frac{\left(k + 1\right) \left(k + 4\right)}{4 \left(k + 2\right) \left(k + 3\right)}\]