\(\frac{k^{2}+5k+4}{4k^{2}+20k+24}\)

asked by guest
on Nov 26, 2024 at 6:17 pm



You asked:

Evaluate the expression: \(\frac{{k}^{2} + 5 k + 4}{4 {k}^{2} + 20 k + 24}\)

MathBot Answer:

Evaluated



\(\displaystyle \frac{{k}^{2} + 5 k + 4}{4 {k}^{2} + 20 k + 24} = \frac{k^{2} + 5 k + 4}{4 k^{2} + 20 k + 24} \)


Expanded

\[\frac{{k}^{2} + 5 k + 4}{4 {k}^{2} + 20 k + 24} = \frac{k^{2}}{4 k^{2} + 20 k + 24} + \frac{5 k}{4 k^{2} + 20 k + 24} + \frac{4}{4 k^{2} + 20 k + 24}\]


Factored

\[\frac{{k}^{2} + 5 k + 4}{4 {k}^{2} + 20 k + 24} = \frac{\left(k + 1\right) \left(k + 4\right)}{4 \left(k + 2\right) \left(k + 3\right)}\]