(4+3n)⋅(3n−2n)−(n−1)⋅5n=

asked by guest
on Mar 30, 2025 at 4:47 am



You asked:

Evaluate the expression: (4+3n)(3n2n)(n1)5n\left(4 + 3 n\right) \left(3 n - 2 n\right) - \left(n - 1\right) \cdot 5 n

MathBot Answer:

Evaluated



(4+3n)(3n2n)(n1)5n=n(3n+4)5n(n1)\displaystyle \left(4 + 3 n\right) \left(3 n - 2 n\right) - \left(n - 1\right) \cdot 5 n = n \left(3 n + 4\right) - 5 n \left(n - 1\right)


Expanded

(4+3n)(3n2n)(n1)5n=2n2+9n\left(4 + 3 n\right) \left(3 n - 2 n\right) - \left(n - 1\right) \cdot 5 n = - 2 n^{2} + 9 n


Factored

(4+3n)(3n2n)(n1)5n=n(2n9)\left(4 + 3 n\right) \left(3 n - 2 n\right) - \left(n - 1\right) \cdot 5 n = - n \left(2 n - 9\right)