(x(x-3)(x+3))+(3(x-3)(x+3))

asked by guest
on Apr 04, 2025 at 4:14 pm



You asked:

Evaluate the expression: x(x3)(x+3)+3(x3)(x+3)x \left(x - 3\right) \left(x + 3\right) + 3 \left(x - 3\right) \left(x + 3\right)

MathBot Answer:

Evaluated



x(x3)(x+3)+3(x3)(x+3)=x(x3)(x+3)+3(x3)(x+3)\displaystyle x \left(x - 3\right) \left(x + 3\right) + 3 \left(x - 3\right) \left(x + 3\right) = x \left(x - 3\right) \left(x + 3\right) + 3 \left(x - 3\right) \left(x + 3\right)


Expanded

x(x3)(x+3)+3(x3)(x+3)=x3+3x29x27x \left(x - 3\right) \left(x + 3\right) + 3 \left(x - 3\right) \left(x + 3\right) = x^{3} + 3 x^{2} - 9 x - 27


Factored

x(x3)(x+3)+3(x3)(x+3)=(x3)(x+3)2x \left(x - 3\right) \left(x + 3\right) + 3 \left(x - 3\right) \left(x + 3\right) = \left(x - 3\right) \left(x + 3\right)^{2}