(1+cosA)(1-cosA)
You asked:
Evaluate the expression: \(\left(1 + \cos\left( A \right)\right) \cdot \left(1 - \cos\left( A \right)\right)\)
MathBot Answer:
Evaluated
\(\displaystyle \left(1 + \cos\left( A \right)\right) \cdot \left(1 - \cos\left( A \right)\right) = \left(1 - \cos{\left(A \right)}\right) \left(\cos{\left(A \right)} + 1\right) \)
Expanded
\[\left(1 + \cos\left( A \right)\right) \cdot \left(1 - \cos\left( A \right)\right) = 1 - \cos^{2}{\left(A \right)}\]
Factored
\[\left(1 + \cos\left( A \right)\right) \cdot \left(1 - \cos\left( A \right)\right) = - \left(\cos{\left(A \right)} - 1\right) \left(\cos{\left(A \right)} + 1\right)\]