((16.39-10.19)^2+(5.15-10.19)^2 〖+(5.22-10.19)〗^2+(14.0-10.19)^2)/(4-1)

asked by guest
on Nov 17, 2024 at 6:20 am



You asked:

Evaluate the expression: \(\frac{{\left( 16.39 - 10.19 \right)}^{2} + {\left( 5.15 - 10.19 \right)}^{2} \cdot {\left( 5.22 - 10.19 \right)}^{2} + {\left( 14.0 - 10.19 \right)}^{2}}{4 - 1}\)

MathBot Answer:

\[\frac{{\left( 16.39 - 10.19 \right)}^{2} + {\left( 5.15 - 10.19 \right)}^{2} \cdot {\left( 5.22 - 10.19 \right)}^{2} + {\left( 14.0 - 10.19 \right)}^{2}}{4 - 1} = \frac{4252490509}{18750000} = 226.79949381\overline{3}\]


\[\begin{aligned}\frac{{\left( 16.39 - 10.19 \right)}^{2} + {\left( 5.15 - 10.19 \right)}^{2} \cdot {\left( 5.22 - 10.19 \right)}^{2} + {\left( 14.0 - 10.19 \right)}^{2}}{4 - 1}& = \left(\left(16 + \frac{39}{100} - \left(10 + \frac{19}{100}\right)\right)^{2} + \left(5 + \frac{15}{100} - \left(10 + \frac{19}{100}\right)\right)^{2} \cdot \left(5 + \frac{22}{100} - \left(10 + \frac{19}{100}\right)\right)^{2} + \left(14 - \left(10 + \frac{19}{100}\right)\right)^{2}\right) \cdot \frac{1}{4 - 1}\\& = \left(\left(16 + \frac{39}{100} - \frac{1019}{100}\right)^{2} + \left(5 + \frac{15}{100} - \left(10 + \frac{19}{100}\right)\right)^{2} \cdot \left(5 + \frac{22}{100} - \left(10 + \frac{19}{100}\right)\right)^{2} + \left(14 - \left(10 + \frac{19}{100}\right)\right)^{2}\right) \cdot \frac{1}{4 - 1}\\& = \left(\left(\frac{1639}{100} - \frac{1019}{100}\right)^{2} + \left(5 + \frac{15}{100} - \left(10 + \frac{19}{100}\right)\right)^{2} \cdot \left(5 + \frac{22}{100} - \left(10 + \frac{19}{100}\right)\right)^{2} + \left(14 - \left(10 + \frac{19}{100}\right)\right)^{2}\right) \cdot \frac{1}{4 - 1}\\& = \left(\left(\frac{31}{5}\right)^{2} + \left(5 + \frac{15}{100} - \left(10 + \frac{19}{100}\right)\right)^{2} \cdot \left(5 + \frac{22}{100} - \left(10 + \frac{19}{100}\right)\right)^{2} + \left(14 - \left(10 + \frac{19}{100}\right)\right)^{2}\right) \cdot \frac{1}{4 - 1}\\& = \left(\frac{961}{25} + \left(5 + \frac{15}{100} - \left(10 + \frac{19}{100}\right)\right)^{2} \cdot \left(5 + \frac{22}{100} - \left(10 + \frac{19}{100}\right)\right)^{2} + \left(14 - \left(10 + \frac{19}{100}\right)\right)^{2}\right) \cdot \frac{1}{4 - 1}\\& = \left(\frac{961}{25} + \left(5 + \frac{3}{20} - \left(10 + \frac{19}{100}\right)\right)^{2} \cdot \left(5 + \frac{22}{100} - \left(10 + \frac{19}{100}\right)\right)^{2} + \left(14 - \left(10 + \frac{19}{100}\right)\right)^{2}\right) \cdot \frac{1}{4 - 1}\\& = \left(\frac{961}{25} + \left(5 + \frac{3}{20} - \frac{1019}{100}\right)^{2} \cdot \left(5 + \frac{22}{100} - \left(10 + \frac{19}{100}\right)\right)^{2} + \left(14 - \left(10 + \frac{19}{100}\right)\right)^{2}\right) \cdot \frac{1}{4 - 1}\\& = \left(\frac{961}{25} + \left(\frac{103}{20} - \frac{1019}{100}\right)^{2} \cdot \left(5 + \frac{22}{100} - \left(10 + \frac{19}{100}\right)\right)^{2} + \left(14 - \left(10 + \frac{19}{100}\right)\right)^{2}\right) \cdot \frac{1}{4 - 1}\\& = \left(\frac{961}{25} + \left(- \frac{126}{25}\right)^{2} \cdot \left(5 + \frac{22}{100} - \left(10 + \frac{19}{100}\right)\right)^{2} + \left(14 - \left(10 + \frac{19}{100}\right)\right)^{2}\right) \cdot \frac{1}{4 - 1}\\& = \left(\frac{961}{25} + \frac{15876}{625} \cdot \left(5 + \frac{22}{100} - \left(10 + \frac{19}{100}\right)\right)^{2} + \left(14 - \left(10 + \frac{19}{100}\right)\right)^{2}\right) \cdot \frac{1}{4 - 1}\\& = \left(\frac{961}{25} + \frac{15876}{625} \cdot \left(5 + \frac{11}{50} - \left(10 + \frac{19}{100}\right)\right)^{2} + \left(14 - \left(10 + \frac{19}{100}\right)\right)^{2}\right) \cdot \frac{1}{4 - 1}\\& = \left(\frac{961}{25} + \frac{15876}{625} \cdot \left(5 + \frac{11}{50} - \frac{1019}{100}\right)^{2} + \left(14 - \left(10 + \frac{19}{100}\right)\right)^{2}\right) \cdot \frac{1}{4 - 1}\\& = \left(\frac{961}{25} + \frac{15876}{625} \cdot \left(\frac{261}{50} - \frac{1019}{100}\right)^{2} + \left(14 - \left(10 + \frac{19}{100}\right)\right)^{2}\right) \cdot \frac{1}{4 - 1}\\& = \left(\frac{961}{25} + \frac{15876}{625} \cdot \left(- \frac{497}{100}\right)^{2} + \left(14 - \left(10 + \frac{19}{100}\right)\right)^{2}\right) \cdot \frac{1}{4 - 1}\\& = \left(\frac{961}{25} + \frac{15876}{625} \cdot \frac{247009}{10000} + \left(14 - \left(10 + \frac{19}{100}\right)\right)^{2}\right) \cdot \frac{1}{4 - 1}\\& = \left(\frac{961}{25} + \frac{980378721}{1562500} + \left(14 - \left(10 + \frac{19}{100}\right)\right)^{2}\right) \cdot \frac{1}{4 - 1}\\& = \left(\frac{961}{25} + \frac{980378721}{1562500} + \left(14 - \frac{1019}{100}\right)^{2}\right) \cdot \frac{1}{4 - 1}\\& = \left(\frac{961}{25} + \frac{980378721}{1562500} + \left(\frac{381}{100}\right)^{2}\right) \cdot \frac{1}{4 - 1}\\& = \left(\frac{961}{25} + \frac{980378721}{1562500} + \frac{145161}{10000}\right) \cdot \frac{1}{4 - 1}\\& = \left(\frac{1040441221}{1562500} + \frac{145161}{10000}\right) \cdot \frac{1}{4 - 1}\\& = \frac{4252490509}{6250000} \cdot \frac{1}{4 - 1}\\& = \frac{4252490509}{6250000} \cdot \frac{1}{3}\\& = \frac{4252490509}{18750000}\end{aligned}\]