Prove that:

sina+cosa+1sina+cosa1\frac{sina+cosa+1}{sina+cosa-1} - 1+cosacosa1sina+cosa\frac{1+cosa-cosa}{1-sina+cosa} =2(1+coseca)

asked by guest
on Nov 15, 2024 at 7:29 pm



You asked:

Prove or disprove that the equation sin(a)+cos(a)+1sin(a)+cos(a)11+cos(a)cos(a)1sin(a)+cos(a)=2(1+csc(a))\frac{\sin{\left(a \right)} + \cos{\left(a \right)} + 1}{\sin{\left(a \right)} + \cos{\left(a \right)} - 1} - \frac{1 + \cos{\left(a \right)} - \cos{\left(a \right)}}{1 - \sin{\left(a \right)} + \cos{\left(a \right)}} = 2 \left(1 + \csc{\left(a \right)}\right) is an identity.