Prove that:
$\frac{sina+cosa+1}{sina+cosa-1}$ - $\frac{1+cosa-cosa}{1-sina+cosa}$ =2(1+coseca)
You asked:
Prove or disprove that the equation $\frac{\sin{\left(a \right)} + \cos{\left(a \right)} + 1}{\sin{\left(a \right)} + \cos{\left(a \right)} - 1} - \frac{1 + \cos{\left(a \right)} - \cos{\left(a \right)}}{1 - \sin{\left(a \right)} + \cos{\left(a \right)}} = 2 \left(1 + \csc{\left(a \right)}\right)$ is an identity.