Prove that:
sina+cosa+1sina+cosa−1\frac{sina+cosa+1}{sina+cosa-1}sina+cosa−1sina+cosa+1 - 1+cosa−cosa1−sina+cosa\frac{1+cosa-cosa}{1-sina+cosa}1−sina+cosa1+cosa−cosa =2(1+coseca)
asked by guest on Nov 15, 2024 at 7:29 pm
You asked:
Prove or disprove that the equation sin(a)+cos(a)+1sin(a)+cos(a)−1−1+cos(a)−cos(a)1−sin(a)+cos(a)=2(1+csc(a))\frac{\sin{\left(a \right)} + \cos{\left(a \right)} + 1}{\sin{\left(a \right)} + \cos{\left(a \right)} - 1} - \frac{1 + \cos{\left(a \right)} - \cos{\left(a \right)}}{1 - \sin{\left(a \right)} + \cos{\left(a \right)}} = 2 \left(1 + \csc{\left(a \right)}\right)sin(a)+cos(a)−1sin(a)+cos(a)+1−1−sin(a)+cos(a)1+cos(a)−cos(a)=2(1+csc(a)) is an identity.