sin 2x/sin 3x + cos 2x/ cos 3x
You asked:
Evaluate the expression: \(\frac{\sin\left( 2 x \right)}{\sin\left( 3 x \right)} + \frac{\cos\left( 2 x \right)}{\cos\left( 3 x \right)}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{\sin\left( 2 x \right)}{\sin\left( 3 x \right)} + \frac{\cos\left( 2 x \right)}{\cos\left( 3 x \right)} = \frac{\sin{\left(2 x \right)}}{\sin{\left(3 x \right)}} + \frac{\cos{\left(2 x \right)}}{\cos{\left(3 x \right)}} \)
Factored
\[\frac{\sin\left( 2 x \right)}{\sin\left( 3 x \right)} + \frac{\cos\left( 2 x \right)}{\cos\left( 3 x \right)} = \frac{\sin{\left(2 x \right)} \cos{\left(3 x \right)} + \sin{\left(3 x \right)} \cos{\left(2 x \right)}}{\sin{\left(3 x \right)} \cos{\left(3 x \right)}}\]