(50^2) / (30((28.89/100) + (3.5/50)))

asked by guest
on Nov 26, 2024 at 3:41 pm



You asked:

Evaluate the expression: \(\frac{{50}^{2}}{30 \cdot \left(\frac{28.89}{100} + \frac{3.5}{50}\right)}\)

MathBot Answer:

\[\frac{{50}^{2}}{30 \cdot \left(\frac{28.89}{100} + \frac{3.5}{50}\right)} = \frac{2500000}{10767} = 232.\overline{190953840438376520850747654871366211572397139407448685799201263118788891984768273428067242500232}\]


\[\begin{aligned}\frac{{50}^{2}}{30 \cdot \left(\frac{28.89}{100} + \frac{3.5}{50}\right)}& = 50^{2} \cdot \frac{1}{30 \cdot \left(\left(28 + \frac{89}{100}\right) \cdot \frac{1}{100} + \left(3 + \frac{5}{10}\right) \cdot \frac{1}{50}\right)}\\& = 2500 \cdot \frac{1}{30 \cdot \left(\left(28 + \frac{89}{100}\right) \cdot \frac{1}{100} + \left(3 + \frac{5}{10}\right) \cdot \frac{1}{50}\right)}\\& = 2500 \cdot \frac{1}{30 \cdot \left(\frac{2889}{100} \cdot \frac{1}{100} + \left(3 + \frac{5}{10}\right) \cdot \frac{1}{50}\right)}\\& = 2500 \cdot \frac{1}{30 \cdot \left(\frac{2889}{10000} + \left(3 + \frac{5}{10}\right) \cdot \frac{1}{50}\right)}\\& = 2500 \cdot \frac{1}{30 \cdot \left(\frac{2889}{10000} + \left(3 + \frac{1}{2}\right) \cdot \frac{1}{50}\right)}\\& = 2500 \cdot \frac{1}{30 \cdot \left(\frac{2889}{10000} + \frac{7}{2} \cdot \frac{1}{50}\right)}\\& = 2500 \cdot \frac{1}{30 \cdot \left(\frac{2889}{10000} + \frac{7}{100}\right)}\\& = 2500 \cdot \frac{1}{30 \cdot \frac{3589}{10000}}\\& = 2500 \cdot \frac{1}{\frac{10767}{1000}}\\& = \frac{2500000}{10767}\end{aligned}\]