Find extreme values of x^x

asked by guest
on Dec 08, 2023 at 2:44 am



You asked:

Find the extreme values of xx{x}^{x}

MathBot Answer:

xxx^{x} has a local minimum e1e0.6922e^{- \frac{1}{e}} \approx 0.6922 at x=e1x = e^{-1}.


xxx^{x} has no local maxima.


xxx^{x} has a global minimum e1e0.6922e^{- \frac{1}{e}} \approx 0.6922 at x=e1x = e^{-1}.


xxx^{x} has no global maxima.


To find local extrema of a function, use the second derivative test. A critical point of a single-variable function ff at a point cc is a local minimum if f(c)>0f''(c) > 0 and a local maximum if f(c)<0f''(c) < 0.


xxx^{x} has a critical point at x=e1x = e^{-1}. Use the second derivative test on each critical point to determine if any of these points are local extrema.
Take the second derivative. f(x)=xx((log(x)+1)2+1x)f''(x) = x^{x} \left(\left(\log{\left(x \right)} + 1\right)^{2} + \frac{1}{x}\right)

Evaluate at x=e1x = e^{-1}. $$\begin{aligned}f''(x) &= e^{-1}^{e^{-1}} \left(\left(1 + \log{\left(e^{-1} \right)}\right)^{2} + e^{-1}^{-1}\right) \\ &= e^{1 - e^{-1}}\end{aligned}$$e1e1>0e^{1 - e^{-1}} > 0 so x=e1x=e^{-1} is a local minimum. Evaluate the function at x=e1x = e^{-1} to find the value of the minimum. $$\begin{aligned}f(e^{-1})&=e^{-1}^{e^{-1}} \\ &=e^{- \frac{1}{e}}\end{aligned}$$f(x)f(x) has a local minimum e1ee^{- \frac{1}{e}} at x=e1x = e^{-1}.

    • Axis Limits
    • min x
    • max x
    • min y
    • max y
  • Update Axis Limits
Close Controls