Find extreme values of x^x
You asked:
MathBot Answer:
has a local minimum at .
has no local maxima.
has a global minimum at .
has no global maxima.
To find local extrema of a function, use the second derivative test. A critical point of a single-variable function at a point is a local minimum if and a local maximum if .
has a critical point at . Use the second derivative test on each critical point to determine if any of these points are local extrema.
Take the second derivative.
Evaluate at . $$\begin{aligned}f''(x) &= e^{-1}^{e^{-1}} \left(\left(1 + \log{\left(e^{-1} \right)}\right)^{2} + e^{-1}^{-1}\right) \\ &= e^{1 - e^{-1}}\end{aligned}$$ so is a local minimum. Evaluate the function at to find the value of the minimum. $$\begin{aligned}f(e^{-1})&=e^{-1}^{e^{-1}} \\ &=e^{- \frac{1}{e}}\end{aligned}$$ has a local minimum at .
- Axis Limits
- min x
- max x
- min y
- max y
- Update Axis Limits