Solve the following system of linear equation by Gaussian Elimination Method. x^1 + 2x^2 – x^3 = 1, 3x^1 – 2x^2 + 2x^3 = 2, 7x^1 – 2x^2 + 3x^3 = 5.
You asked:
MathBot Answer:
The system of equations has \(3\) solutions.
\[x = - \frac{59}{81 \sqrt[3]{\frac{853}{1458} + \frac{5 \sqrt{85}}{54}}} + \frac{2}{9} + \sqrt[3]{\frac{853}{1458} + \frac{5 \sqrt{85}}{54}}\]\[x = - \frac{\sqrt[3]{\frac{853}{1458} + \frac{5 \sqrt{85}}{54}}}{2} + \frac{2}{9} + \frac{59}{162 \sqrt[3]{\frac{853}{1458} + \frac{5 \sqrt{85}}{54}}} + i \left(\frac{59 \sqrt{3}}{162 \sqrt[3]{\frac{853}{1458} + \frac{5 \sqrt{85}}{54}}} + \frac{\sqrt{3} \sqrt[3]{\frac{853}{1458} + \frac{5 \sqrt{85}}{54}}}{2}\right)\]\[x = - \frac{\sqrt[3]{\frac{853}{1458} + \frac{5 \sqrt{85}}{54}}}{2} + \frac{2}{9} + \frac{59}{162 \sqrt[3]{\frac{853}{1458} + \frac{5 \sqrt{85}}{54}}} + i \left(- \frac{\sqrt{3} \sqrt[3]{\frac{853}{1458} + \frac{5 \sqrt{85}}{54}}}{2} - \frac{59 \sqrt{3}}{162 \sqrt[3]{\frac{853}{1458} + \frac{5 \sqrt{85}}{54}}}\right)\]
\(i\) is the imaginary unit, defined as \(i^2 = -1\).